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BACKGROUND: In 2014, we conducted a longitudinal study [Anniston Community Health Survey (ACHS II)] 8 y after the baseline (ACHS I).
OBJECTIVES:We investigated the relationship between persistent chlorinated compounds and hypertension in residents living around the former poly-
chlorinated biphenyl (PCB) production plant in Anniston, Alabama. We also examined the potential role of inflammatory cytokines in those with
hypertension.

METHODS: A total of 338 participants had their blood pressure measured and medications recorded, gave a blood sample, and completed a question-
naire. Prevalent hypertension was defined as taking antihypertensive medication or having systolic blood pressure >140mmHg and/or diastolic pres-
sure >90mmHg; incident hypertension used similar criteria in those who developed hypertension since the baseline in 2005–2007. PCB congeners
were categorized into structure–activity groups, and toxic equivalencies (TEQs) were calculated for dioxin-like compounds. Descriptive statistics,
logistic and linear regressions, as well as Cox proportional hazard models, were used to analyze the associations between exposures and hypertension.

RESULTS: Prevalent hypertension (78%) in ACHS II showed statistically significant adjusted odds ratios (ORs) for PCBs 74, 99, 138, 153, 167, 177,
183, and 187, ranging from 2.18 [95% confidence interval (CI): 1.10, 4.33] to 2.76 (95% CI: 1.14, 6.73), as well as for two estrogenic-like PCB
groups, and the thyroid-like group [ORs ranging from 2.25 (95% CI: 1.07, 4.75) to 2.54 (95% CI: 1.13, 5.74)]. Furthermore, analysis of quartiles dem-
onstrated a monotonic relationship for dioxin-like non-ortho (non-o)-PCB TEQs [fourth vs. first quartile: 3.66 (95% CI: 1.40, 9.56)]. Longitudinal
analyses of incident hypertension supported those positive associations. The results were strongest for the di-o-PCBs [hazard ratio ðHRÞ=1:93 (95%
CI: 0.93, 4.00)] and estrogenic II PCB group [HR=1:90 (95% CI: 0.96, 3.78)] but were weaker for the dioxin TEQs.

DISCUSSION: Findings supportive of positive associations were reported for dioxin-like mono-o- and non-o-PCBs as well as for nondioxin-like estro-
genic and thyroid-like congeners with prevalent and incident hypertension, suggesting that multiple pathways may be involved in hypertension devel-
opment. https://doi.org/10.1289/EHP5272

Introduction
Hypertension is one of the leading risk factors for death and dis-
ability globally, according to the World Health Organization
Global Burden of Disease Study (Forouzanfar et al. 2017). In
2008, the global prevalence of hypertension (high blood pressure)
rose to 1 billion people, which accounts for 40% of adults at least
25 years of age (WHO 2013). Of the 17 million deaths attributed
to cardiovascular disease worldwide, hypertension accounts for
9.4 million, including 45% of heart disease and 51% of stroke-
related mortalities (WHO 2013). In the United States, the overall
prevalence of hypertension among adults aged 18 and over was
29% in 2012 (Nwankwo et al. 2013).

There are a number of established risk factors for develop-
ing hypertension, including those linked to heredity and certain
modifiable risk factors that can be changed to prevent or control
hypertension. Known risk factors for hypertension include
genetics/family history, age, race, and gender. Modifiable risk
factors include obesity, diabetes, high salt and fat intake, harm-
ful levels of alcohol use, physical inactivity, high cholesterol,

sleep apnea, and poor stress management (AHA 2016). Poor life-
style behaviors, socioeconomic factors, genetics, and environmen-
tal exposures have also been studied extensively in assessing the
causes and consequences of hypertension (Cuschieri et al. 2017;
Dickson and Sigmund 2006; Park et al. 2016).

Persistent organic pollutants (POPs), including polychlori-
nated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans
(PCDFs), organochlorine pesticides, and polychlorinated biphen-
yls (PCBs) (Jones and de Voogt 1999), have been the focus of
several reviews that examined links between hypertension/heart
disease and chemical exposure (Humblet et al. 2008; Everet et al.
2011; Lind et al. 2014; Faroon and Ruiz 2016; Perkins et al.
2016; Song et al. 2016). A recent meta-analysis of epidemio-
logic studies assessing the impact of POPs on hypertension and
cardiovascular disease revealed that the dioxin-like compounds
(including dioxin-like PCBs) significantly increases the risk of
hypertension (Park et al. 2016).

Nondioxin-like PCB groups such as estrogen-like PCBs
(Warner et al. 2012) could also play a role in hypertension since
female sex hormones may protect against cardiovascular dis-
ease by acting as antiandrogens (Masi et al. 2006; Freire et al.
2014). Another PCB group that may impact hypertension is
thyroid-like congeners because both hyperthyroidism and hypo-
thyroidism produce changes in cardiac contractility and blood
pressure (Marvisi et al. 2013).

Most studies analyzing the connection between PCBs and
hypertension are cross-sectional (Everett et al. 2008; Goncharov
et al. 2011; Henríquez-Hernández et al. 2014; Yorita Christensen
and White 2011; Peters et al. 2014) as are those linking dioxin-like
compounds and hypertension (Chang et al. 2010; Ha et al. 2009;
Ilhan et al. 2015; Lee et al. 2007; Uemura et al. 2009; Nakamoto
et al. 2013). Cohort studies have been used infrequently, with only
a few conducted to assess POPs and hypertension incidence
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(Arrebola et al. 2015; Donat-Vargas et al. 2015, 2018; Raffetti et al.
2018).

Immunotoxic and potentially pro-inflammatory properties of
dioxin-like compounds have long been known to affect different
components of the immune system (Hennig et al. 2002; Kerkvliet
2012). The immune system and systemic inflammation have also
been suspected to play an important role in the biology of atheroscle-
rosis (Ross 1999; Hansson 2005; Helyar et al. 2009). Inflammatory
cells and signals drive the healing response to vascular injury, allow-
ing the initiation and growth of atherosclerotic plaque and contribut-
ing to the development of hypertension (Norlander et al. 2018;
Ridker et al. 2017). When endothelial cells are exposed to PCBs or
dioxin-like compounds, inflammatory pathways may be activated,
leading to the expression of cytokines (Pacher et al. 2002; Hennig
et al. 2007; Helyar et al. 2009; Liu et al. 2015). Inflammatory cyto-
kines released from these cells, including interleukin 1-b ðIL-1bÞ,
IL-17, interferon gamma ðIFN-cÞ, tumor necrosis factor-a (TNFa),
and IL-6, promote both renal and vascular dysfunction and dam-
age, leading to enhanced sodium retention and increased sys-
temic vascular resistance and atherosclerosis (McMaster et al.
2015; Norlander and Madhur 2017; Norlander et al. 2018).

The Anniston Community Health Survey (ACHS I; 2005–
2007) was conducted in Anniston, Alabama, to assess potential
health impacts of living in close proximity to a chemical plant that
produced PCBs from 1929 to 1971 (Pavuk et al. 2014a). The study
revealed a significant association between hypertension prevalence
and the sum of 35 PCB congeners among participants not taking
antihypertensive medication (Goncharov et al. 2010). Various di-,
tri-, and tetra-ortho (o)-PCBs also were linked to systolic and dia-
stolic blood pressure levels (Goncharov et al. 2011). Association

between chlorinated pesticides [dichlorodiphenyltrichloroethane (p,
p0-DDT), trans-nonachlor, dichlorodiphenyldichloroethylene (p,p0-
DDE), hexachlorobenzene (HCB), and oxychlor], but not with
PCBs, were observed with metabolic syndrome, which includes
components of elevated blood pressure (Rosenbaum et al. 2017).

We conducted a follow-up of the ACHS I study in 2014
(ACHS II) to build on the baseline study and evaluate selected
incident health outcomes, as well as to assess associations with
other chemicals. In addition to PCBs, ACHS II also included
PCDDs, PCDFs, and non-o-PCBs (Birnbaum et al. 2016). In this
current analysis, we evaluated the relationship between serum
concentrations of PCBs and dioxin toxic equivalencies (TEQs)
with hypertension prevalence and incidence of hypertension.
We used structure–activity PCB groups such as estrogenic,
anti-estrogenic, thyroid-like, and others (Warner et al. 2012;
Consonni et al. 2012; Hansen 1998) to contrast aryl hydrocar-
bon receptor (AhR)–dependent mechanisms (Murray et al.
2014), as represented by dioxin TEQs with nondioxin-like
PCBs, which operate through mechanisms independent of the
AhR. We also studied whether those chemicals have any rela-
tionship with cytokine levels as biomarkers of systemic inflam-
mation in those individuals with hypertension.

Methods
In 2014, ACHS II was conducted as a follow-up of the 2005–
2007 ACHS I study of the residents of Anniston, Alabama. All
surviving ACHS I participants were eligible for the study. Of the
original 765 study subjects, 114 were confirmed dead from the
Social Security Index, and 69 were confirmed by site visits and

Original ACHS I Cohort (2005-2007)
766 participants

-Ortho-PCBs & pesticides measured
- Body and blood pressure measures
-Questionnaire and medication data

-114 deceased
-69 moved from study area

-1 other

582 current address in study area

438 successful contact made

ACHS II COHORT (2014)
359 participants

(Birnbaum et al., 2016)
-PCBs, dioxins, and pesticides measured
- Body and blood pressure measures
-Questionnaire and medication data

PCBs, Dioxins, and Prevalent Hypertension in ACHS II
338 participants with dioxin measurements

236 prevalent hypertension cases

PCB exposure and Hypertension in ACHS I
(Goncharov et al., 2010)

758 total participants
436 prevalent hypertension cases

PCBs, Dioxins, and Incident Hypertension in ACHS II
145 participants with dioxin measurements

80 incident hypertension cases

-37 refusals
-9 not eligible due to illness

-32 could not reschedule 
-1 other

Current Analysis

Figure 1. Overview of participant selection and data collection for the follow-up study Anniston Community Health Survey (ACHS II). TEQ, toxic
equivalency.
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phone calls by our staff to have moved out of the study area
(Birnbaum et al. 2016). We successfully contacted 438 respond-
ents, of whom 359 were enrolled in ACHS II (Figure 1). For the
current analyses, each participant had his/her systolic and dia-
stolic blood pressure measured three times manually by a certi-
fied nurse using a standard sphygmomanometer, arm cuff (three
different sizes available), and stethoscope at 2-min intervals, begin-
ning after the individual had been sitting for 5 min. Study office
temperature was kept constant at 72°F, and light snacks and drinks
were available to study participants. Participants were asked to bring
in current prescription medications; those medications were used to
determine whether the participant was on antihypertensive medica-
tion. The study nurse transcribed the drug name, dosage, and fre-
quency. This information was used later to create variables of
medication grouping by the University of Alabama Birmingham
(UAB) research staff including 12 categories of hypertension/heart
failure/angina medication (angiotensin-converting enzyme inhibi-
tors, angiotensin II receptor antagonists, combination, calcium chan-
nel blockers, nitrates, beta-blockers, alpha-/beta-blockers, alpha-
blockers, central alpha-agonists, diuretics, aldosterone blockers, and
vasodilators).

Hypertension, the primary outcome of interest, was defined as
either taking antihypertensive medication or having an averaged
second and third measured systolic blood pressure >140mmHg
and/or averaged diastolic pressure >90mmHg (Krakoff et al.
2014). Hypertension self-reports were not used in this study. In-
person interviews were conducted using questionnaires to assess
participants’ health and behaviors. Of 359 participants complet-
ing a questionnaire, 338 provided a sufficient fasting blood sam-
ple for chemical analyses. The study was reviewed, and approval
was obtained from the Institutional Review Board at the Centers
for Disease Control and Prevention (CDC).

Laboratory Analysis
The sera were isolated by centrifugation using red top vacutainer
tubes and shipped on dry ice to the Division of Laboratory
Sciences at the CDC, National Center for Environmental Health
(NCEH). Participant samples were stored at −70�C.

Serum samples were first measured for PCDD/F and non-o-
PCBs based on published methodology (Turner et al. 1997) using
20 g of serum (median: 20 g; range: 2:5−20:7 g; 10th percentile:
14:0 g). The samples were then measured for o-PCBs according
to published methodology (Sjödin et al. 2004; Jones et al. 2012)
using 2 g of serum. Each analytical batch for o-PCBs was defined
as 24 unknowns, 3 quality controls, and 3 method blanks, while
for PCDD/F and non-o-PCBs, each analytical batch included 8
unknowns, 2 quality controls, and 2 method blanks. Measurements
of target organohalogens were made by gas chromatography–iso-
tope dilution–high-resolution mass spectrometry.

Cytokines were measured using two separate multiplex bead
arrays on a Luminex IS100 system (EMD Millipore Corporation)
at the University of Louisville. The first array (HADK2MAG-
61K) measured IL-1b and TNFa. For the measurement of IL-6,
IL-8, and IL-17, the State University of New York Molecular
Analysis Core laboratory used the MILLIPLEX® MAP Human
High-Sensitivity T-Cell 21-Plex Panel (EMD Millipore catalog
number HSTCMAG28SPMX21). All techniques were performed
per the Millipore protocol using quality control reagents and
standards provided with the kit (Milliplex Assay Guide). As
listed in the panel documentation, standard curve ranges are IL-
6 (0:18−750 pg=mL), IL-8 (0:31−1,250 pg=mL), and IL-17
(0:73−3,000 pg=mL). Additional details concerning the stand-
ard curves can be found in the application note by Keith et al.
(2015).

Statistical Analysis
Descriptive measures and exposure variables. All statistical
analyses were conducted using SAS (version 9.4; SAS Institute
Inc.) and R (version 3.3.0; R Development Core Team) packages.
Descriptive statistics were calculated for outcome variables, de-
mographic characteristics, and exposure variables; differences
were compared using a two-tailed t-test for continuous variables
and chi-square tests for categorical variables. Analyses of indi-
vidual PCB congeners were undertaken if more than 60% of the
samples had values above the limits of detection. We also created
several summary exposures variables. The sum of 35 PCBs was
created by adding together the mass of all 35 congeners specified
in Pavuk et al. (2014a). We also evaluated the potential associa-
tions of several PCB structure–activity groups as classified by
Warner et al. (2012) and others as shown in Table 1. Dioxin cate-
gories are based on structure–activity groups, selected from the
best-available literature for PCB groupings using the review from
Warner et al. (2012) as a basis (Table 1).

In order to calculate total dioxin TEQ, PCDD, PCDF, non-
o-PCB, and mono-o-PCB congeners were assigned a potency
relative to 2,3,7,8-TCDD [TEQ factor ðTEFÞ=1]. We multi-
plied the TEF values by the associated congener concentration
to attain specific TEQs (Van den Berg et al. 2006). PCDD TEQ,
PCDF TEQ, non-o-PCB TEQ, and mono-o-PCB TEQ were the
sum of the individual congener classifications. Total dioxin
TEQ was the sum of the four dioxin-like compound group TEQs
listed previously.

Hypertension prevalence analyses. We used unconditional
logistic regression to model hypertension status with exposure
variables including summary TEQs and summary PCB groups.
Summary TEQs and PCB groups were analyzed both as wet
weight (or whole weight, ng/g serum) and as lipid-adjusted varia-
bles (ng/g lipid). Each continuous exposure variable was log10
transformed (Bernert et al. 2007). The adjusted models included
age (years), sex (female, male), race (African American, white),
total lipids [(mg/dL) for wet weight models only], body mass
index (BMI) (kg=m2), family history of high blood pressure (yes,
no), and smoking status (smoked at least 100 cigarettes in life-
time, never smoked). These variables are established risk factors
for cardiovascular disease and were therefore deemed appropriate
for inclusion in all adjusted models. We evaluated additional
covariates as potential confounders in the adjusted models such
as measures of physical activity, alcohol consumption (at least 12
drinks in lifetime), and education. These variables did not change
the effect estimates by more than 10%, were not associated with
hypertensive status, and, therefore, were not included in the final
models.

Regression models for cytokines analyses. Adjusted multi-
variate linear regression models and analysis of covariance were
used in the cytokine analyses. We restricted those models to indi-
viduals with hypertension, excluding all participants without it
(n=263). We used total dioxin TEQ and sum nondioxin-like
PCBs as exposures in these analyses. As in the logistic regression
models, exposure variables were log transformed and similar
covariates included for confounder adjustment.

Linear regression modeling for predicting continuous blood
pressure readings. In multivariate linear regression models of
systolic and diastolic blood pressure, the individuals on antihy-
pertensive medication were removed, leaving 124 participants
available for analyses. Exposure variables included summary
chemical groupings that were then log transformed. The covari-
ates included for confounder adjustment were the same as those
used in the logistic regression models and defined above.

Hypertension incidence analyses. For hypertension incidence
analyses, incident cases were defined as not being hypertensive
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in ACHS I and then developing hypertension in ACHS II; those
who were hypertensive in ACHS I were censored/categorized
as missing in the follow-up phase. There were 80 incident cases
out of 145 nonhypertensive participants eligible for incidence
analyses. We used logistic regression and proportional hazard
regression to analyze the likelihood of becoming an incident
hypertension case among all participants not meeting the criteria
for hypertension in ACHS I. The time component for propor-
tional hazard regression was created using all available informa-
tion from questionnaire and medication data. The baseline time
was the age of the participant at the ACHS I blood draw date.
Twenty-one participants reported age at high blood pressure
diagnoses, which we used to subtract the age at baseline. We sub-
stituted age of diagnosis for hypertension for age of diagnosis for
other heart disease (stroke, heart attack, congestive heart failure,
or coronary heart disease) for 11 participants who did not report
a hypertension date of diagnosis. The remaining 48 incident
hypertension cases were diagnosed at the follow-up clinic exami-
nation taking antihypertensive medication (n=17) or measured
high blood pressure (n=31). The time component for the nonhy-
pertensive participants was attained by subtracting the ACHS I
blood draw date from the ACHS II interview date/blood draw
date. Among the incident hypertensive cases, 49 (61.3%) were
taking antihypertensive medication; these participants had 291.9
total person-years since ACHS I. The remaining 31 incident
cases had elevated averaged systolic and/or diastolic blood pres-
sure levels, with 213.3 total person-years. The 65 nonhyperten-
sive participants had 496.4 total person-years since ACHS I.

In addition to PCB summary groups, we analyzed incident
hypertension with estimated ACHS I TEQs. Concentrations of
PCDD, PCDF, mono-o-, and non-o-PCB TEQs for ACHS I were
calculated using linear regression modeling based on a pilot dioxin
exposure study (n=65) in 2007 (Pavuk et al. 2014b). The beta
coefficients and intercepts were used to estimate the missing
ACHS I values for all ACHS II participants not included in the
pilot study (n=303); ACHS I TEQs were the outcomes, and
ACHS II TEQs were the sole predictors in these models. Thirty-
five of the pilot study participants took part in both ACHS I and
the follow-up ACHS II and provided validation of the estimated
concentrations (Yang et al. 2018).

Results
Demographic characteristics of the study population are presented
in Table 2. The majority of participants were classified as hyper-
tensive (77.8%), of whom 214 (81.4%) were on antihypertensive
medication; 49 (18.6%) were classified as having hypertension at
the study visit based on elevated diastolic and or systolic levels.
The mean age for participants with and without hypertension was
64.3 and 56.9 y respectively; all participants self-identified as ei-
ther African-American (55.9%) or white. The means of several
health demographics were similar for the hypertension and non-
hypertension groups: total lipid (623:7 mg=dL and 620:0 mg=dL,
respectively). BMI was higher in individuals with hyperten-
sion (32:0 kg=m2) than in individuals without hypertension
(30:5 kg=m2). In both groups, the study participants were predomi-
nantly female and nonsmokers. Overall, those who had hyperten-
sion were older and were more likely to be African-American than
white. Across exposures, participants with hypertension had higher
concentrations of total dioxins and nearly three times greater expo-
sure to PCBs; correlations between these groups are presented in
Figure 2. There was a high correlation between PCB groups, with
weaker correlations seen between PCBs and p,p0-DDE and dioxins.

Table 3 presents odds ratios (ORs) of hypertension with
log10-transformed dioxin TEQs. TEQ variables were modeled as
wet weight with total lipids as a covariate in both the unadjusted
and adjusted models (lipid-normalized results shown in Table S1).
Total dioxin TEQ was only modestly elevated {1.63 [95% confi-
dence interval (CI): 0.53, 4.99]}, similar to adjusted odds of hyper-
tension seen for PCDD TEQ and PCDF TEQ. Stronger increases
were seen for mono-o-PCB TEQ [2.08 (95% CI: 0.91, 4.77)] and
non-o-PCB TEQ [1.99 (95% CI: 0.93, 4.23)]. When dioxin-like PCB
groups were divided into quartiles, non-o-PCBs showed a monotonic
trend in the adjusted model [Q2: 1.81 (95% CI: 0.87, 3.79), Q3: 2.43
(95% CI: 1.09, 5.44), and Q4: 3.66 (95% CI: 1.40, 9.56)] and quar-
tiles 3 and 4 were statistically significant (Table 4). Mono-o-PCB
also showed positive ORs in an adjusted model assessing hyperten-
sion but to a lesser degree [Q2: 1.34 (95% CI: 0.60, 3.02), Q3: 2.13
(95% CI: 0.86, 5.30), and Q4: 1.59 (95% CI: 0.53, 4.71)]. A compar-
ison of these estimates to quartiles of lipid-adjusted substituted
TEQs (Table S2) demonstrated a similar magnitude and direction of
effect, but the whole-weight analysis was stronger.

Table 1. Groupings of PCB congeners and dioxin compounds used for analyses.

PCB structure–activity group Congeners and compounds included Source

Sum 35 28, 44, 49, 52, 66, 74, 87, 99, 101, 105, 110, 118, 128, 138+ 158, 146, 149,
151, 153, 156, 157, 167, 170, 172, 177, 178, 180, 183, 187, 189, 194, 195,
196+ 203, 199, 206, 209

Warner et al. 2012

Estrogen I 44, 49, 66, 74, 99, 110, 128 DeCastro et al. 2006; Silverstone et al. 2012
Estrogen II 52, 99, 101, 110, 153 Warner et al. 2012
Anti-estrogenic 66, 74, 105, 118, 156, 167 Warner et al. 2012; Cooke et al. 2001; Wolff

et al. 1997; combined Wolff and Cooke
groupings

Thyroid-like 28, 52, 74, 101, 105, 118 Hansen 1998
Ryanodine-like 52, 101, 149, 151, 170, 180, 183, 187 Pessah et al. 2006
Mono-o-substituted 28, 66, 74, 105, 118, 156, 157, 167, 189 Warner et al. 2012
Di-o-substituted 44, 49, 52, 87, 99, 101, 128, 138+ 158, 146, 153, 170, 172, 180, 194 Warner et al. 2012
Tri, tetra-o-substituted 149, 151, 177, 178, 183, 187, 195, 196+ 203, 199, 206 Warner et al. 2012
Dioxin categories
PCDDs 2,3,7,8-TCDD; 1,2,7,8-PCDD; 1,2,3,4,7,8-HCDD; 1,2,3,6,7,8-HCDD;

1,2,3,7,8,9-HCDD; 1,2,3,4,6,7,8-HCDD; OCDD
Van den Berg et al. 2006

PCDFs 2,3,7,8-TCDF; 1,2,3,7,8-PCDF; 2,3,4,7,8-PCDF; 1,2,3,4,7,8-HCDF;
1,2,3,6,7,8-HCDF; 1,2,3,7,8,9-HCDF; 2,3,4,6,7,8-HCDF; 1,2,3,4,6,7,8-HCDF;
1,2,3,4,7,8,9-HCDF; OCDF

Van den Berg et al. 2006

Mono-o-PCBs 105, 118, 156, 167, 189, 114, 123 Van den Berg et al. 2006
Non-o-PCBs 81, 126, 169 Van den Berg et al. 2006
Total dioxins All above Van den Berg et al. 2006

Note: HCDD, hexachlorodibenzo-p-dioxin; HCDF, hexachlorodibenzofuran; o, ortho; OCDD, octachlorodibenzodioxin; OCDF, octachlorodibenzofuran; PCB, polychlorinated
biphenyl; PCDD, polychlorinated dibenzo-p-dioxin; PCDF, polychlorinated dibenzofuran; TCDD, tetrachlorodibenzodioxin.

Environmental Health Perspectives 127007-4 127(12) December 2019



The adjusted ORs were increased for all nondioxin-like struc-
ture–activity PCB groups in ACHS II and also for the dioxin-like
mono-o-congener group (Table 3); the strongest associations
with hypertension were observed for the estrogenic I [2.36 (95%
CI: 1.07, 5.22)], estrogenic II [2.54 (95% CI: 1.13, 5.74)], and
thyroid-like PCB groups [2.25 (95% CI: 1.07, 4.75)], followed by
the mono-o-PCBs [2.26 (95% CI: 0.97, 5.29)]. All ORs were at

or above 1.78. Corresponding analyses for lipid adjusted PCB
groups can be seen in Table S1.

As shown in Table 5, analyses of 26 individual PCB conge-
ners strongly support the PCB group analyses. Fifteen of 26 con-
geners had ORs above 2.00, and an additional 6 were above 1.50.
Strong positive associations were reported for the dioxin-like,
mono-o-substituted, and potentially antiestrogenic congeners such

Table 2. Demographics and exposures of ACHS II participants stratified by hypertension status at follow-up in 2014.

Demographics Hypertension (n=263) Nonhypertension (n=75) p-Value

Age (y) 64:3± 11:8 56:9± 15:3 0.0002
BMI (kg=m2) 32:0± 8:2 30:5± 7:8 0.17
African Americans 147 (55.9%) 25 (33.3%) 0.0006
Females 193 (73.4%) 52 (69.3%) 0.49
Total lipid (mg/dL) 623:7± 159:3 620:0± 140:0 0.86
Triglycerides (mg/dL) 135:9± 91:0 118:7± 73:6 0.1335
Glucose 107:6± 57:5 88:6± 26:9 0.0057
Exercise in past month 94 (35.7%) 35 (46.7%) 0.0341
Education (>high school) 87 (33.3%) 32 (42.7%) 0.1363
Alcohol (lifetime)a 178 (67.7%) 52 (69.3%) 0.7866
Smoking status (lifetime)b 56 (21.3%) 15 (20.0%) 0.81
Family history of high blood pressure 208 (79.1%) 53 (70.7%) 0.13
Exposures
Total TEQ (pg/g) 166:7± 151:5 99:3± 86:7 0.0003
Sum PCBs (pg/g) 6,433:8± 8,092:9 2,888:1± 3,257:0 0.0002
Sum nondioxin-like PCBs (pg/g) 5,423:4± 6,889:5 2,433:6± 2,706:3 0.0003
Total TEQ (pg/g lipid) 42:4± 112:8 27:0± 24:3 0.2425
Sum PCBs (ng/g lipid) 1,064:6± 1,248:3 511:6± 629:5 0.0003
Sum nondioxin-like PCBs (ng/g lipid) 895:6± 1,052:2 430:1± 520:2 0.0003

Note: Continuous variables presented as [mean± standard deviation ðSDÞ], categorical variables as n (%). ACHS II, Anniston Community Health Survey follow-up; BMI, body mass
index; PCB, polychlorinated biphenyl; TEQ, toxic equivalency. p-Value for continuous variables determined by two-tailed t-test, a<0:05. p-Value for categorical variables determined
by chi-square test, a<0:05.
aAlcohol status defined as having had at least 12 alcoholic drinks in lifetime/never drank.
bSmoking status defined as having smoked at least 100 cigarettes in lifetime/never smoked cigarette.
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Figure 2. Pearson correlation matrix between whole weight structure–activity polychlorobiphenyl (PCB) groups, selected dioxin categories, and dichlorodiphe-
nyldichloroethylene (p,p 0-DDE).
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as congeners 74, 99, 105, 118, and 167. The nondioxin like, di-o-
congeners 138 and 153, as well as the tri- and tetra-o-, ryanodine-
like congeners 177, 183, and 187 also showed strong positive
associations with hypertension status; these 5 ORs were between 2
and 3, with CIs not including 1.

We also analyzed the linear relationship between chemical
groups, both as TEQs and PCB subsets, and measures of sys-
tolic and diastolic blood pressure obtained during the follow-
up study office visit for participants not taking antihyperten-
sive medication (Table S3 and Figures S1 and S2). Overall, no
strong links between PCB concentrations or TEQs and blood
pressure measurements were observed, although some weak
associations were found for systolic blood pressure.

In the analyses of incident hypertension, we detected 80 new
cases from the baseline in 2005–2007 to the follow-up in 2014,
with a total of 505.2 person-years. As shown in Table 6, incident
cases were, on average, 5 y older than those without hypertension
and were more likely to be African-American and have higher se-
rum levels of sum PCBs, sum of nondioxin-like PCBs, and total
TEQs. The proportional hazard ratios (HRs) for the dioxin-like
TEQs ranged from 1.33 to 2.16 and from 1.48 to 1.93 for the
PCB-structure–activity groups; all CIs included the value 1
(Table 7). The strongest associations were observed for estro-
genic II PCBs [1.90 (95% CI: 0.96, 3.78)], the di-o-PCBs [1.93
(95% CI: 0.93, 4.00)], and the sum of all PCBs congeners [1.89
(95% CI: 0.91, 3.90)]. While the reported CIs include 1, the
data are supportive of an increased risk of hypertension rather
than no association; this is especially apparent for the PCB
groups (Table 7).

Incidence analyses using TEQ tertiles as the exposure varia-
bles revealed a nonmonotonic pattern of increases in the second
tertile but a similar or lower HR in the third tertile. The strong-
est association was found between the second tertile of mono-o-
PCB TEQ and hypertension [HR=2:00 (95% CI: 1.11, 3.62)]
(Table S4).

Geometric means for several inflammatory cytokines (TNFa,
IL-1b, IL-6, IL-8, and IL-17) reported to be involved in the de-
velopment of hypertension were higher in hypertensive subjects
in ACHS II than in those without hypertension for all studied
cytokines; the biggest differences were observed for IL-6, IL-8,
and IL-17, but none of these reached statistical significance
(Table 8). These geometric means were adjusted for age, sex,
race, gender, and BMI. We also wanted to know whether
increases in cytokine concentrations, as biomarkers of sys-
temic inflammation, were in some way related to increases in
dioxin TEQ or PCB exposures. We contrasted dioxin TEQs

Table 3. Logistic regression models of dioxin TEQs, PCB groups (whole
weight), and hypertension.

TEQ (pg/g) n (hypertension/total) Adjusted OR (95% CI)

PCDD 262/337 1.67 (0.43, 6.40)
PCDF 261/336 1.88 (0.49, 7.25)
Mono-o-PCB 263/338 2.08 (0.91, 4.77)
Non-o-PCB 251/313 1.99 (0.93, 4.23)
Total dioxin 263/338 1.63 (0.53, 4.99)
PCB groups
Sum 263/338 2.27 (0.92, 5.61)
Mono-o 263/338 2.26 (0.97, 5.29)
Di-o 263/338 1.91 (0.78, 4.70)
Tri, tetra-o 263/338 1.78 (0.76, 4.20)
Estrogenic I 263/338 2.36 (1.07, 5.22)
Estrogenic II 263/338 2.54 (1.13, 5.74)
Anti-estrogenic 263/338 2.08 (0.91, 4.77)
Thyroid-like 263/338 2.25 (1.07, 4.75)
Ryanodine 263/338 2.17 (0.88, 5.38)

Note: Adjusted models include log10-transformed total lipids, age, sex, race, body
mass index (BMI), smoking status, and family history of high blood pressure. CI,
confidence interval; o, ortho; OR, odds ratio; PCB, polychlorinated biphenyl; PCDD,
polychlorinated dibenzo-p-dioxin; PCDF, polychlorinated dibenzofuran; TEQ, toxic
equivalency.

Table 4. Logistic regression models of summary log10 dioxin TEQ quartiles
(pg/g whole weight) and hypertension.

Dioxin TEQ group
(cut point) n (hypertension/total) Adjusted OR (95% CI)

PCDD TEQ 262/337 —
Q1 (<1:578) 55/85 1.0 (referent)
Q2 (1.578–1.774) 64/83 1.39 (0.63, 3.06)
Q3 (1.774–1.920) 71/84 1.65 (0.64, 4.27)
Q4 (≥1:920) 72/85 1.11 (0.38, 3.21)
PCDF TEQ 261/336 —
Q1 (<0:91) 61/84 1.0 (referent)
Q2 (0.981–1.146) 65/84 0.98 (0.44, 2.17)
Q3 (1.146–1.295) 61/84 0.66 (0.28, 1.52)
Q4 (≥1:295) 74/84 1.12 (0.41, 3.06)
Mono-o-PCB TEQ 263/338 —
Q1 (<0:628) 49/84 1.0 (referent)
Q2 (0.628–0.926) 67/85 1.34 (0.60, 3.02)
Q3 (0.926–1.319) 73/85 2.13 (0.86, 5.30)
Q4 (≥1:319) 74/84 1.59 (0.53, 4.71)
Non-o-PCB TEQ 263/338 —
Q1 (<1:064) 64/104 1.0 (referent)
Q2 (1.064–1.337) 62/78 1.81 (0.87, 3.79)
Q3 (1.337–1.730) 66/78 2.43 (1.09, 5.44)
Q4 (≥1:730) 71/78 3.66 (1.40, 9.56)
Total dioxin TEQ 263/338 —
Q1 (<1:794) 57/85 1.0 (referent)
Q2 (1.794–2.029) 58/84 0.68 (0.32, 1.46)
Q3 (2.029–2.245) 72/85 1.52 (0.60, 3.82)
Q4 (≥2:245) 76/84 1.43 (0.45, 4.50)

Note: —, no data; CI, confidence interval; o, ortho; OR, odds ratio; PCB, polychlorinated
biphenyl; PCDD, polychlorinated dibenzo-p-dioxin; PCDF, polychlorinated dibenzofuran;
Q, quartile; TEQ, toxic equivalency.

Table 5. Logistic regression models of individual ortho-substituted PCB
congeners (ng/g whole weight) and hypertension.

PCB congeners (ng/g) na Adjusted OR (95% CI)

28 205/253 1.44 (0.54, 3.83)
66 197/233 0.82 (0.30, 2.25)
74 262/335 2.76 (1.14, 6.73)
99 262/336 2.18 (1.10, 4.33)
105 252/316 2.00 (0.95, 4.22)
114 233/283 2.72 (0.90, 8.25)
118 263/338 2.02 (1.00, 4.07)
138 261/335 2.70 (1.21, 6.04)
146 263/336 2.11 (0.97, 4.62)
153 263/338 2.57 (1.13, 5.86)
156 262/335 1.68 (0.67, 4.21)
157 255/318 1.89 (0.70, 5.09)
167 257/322 2.37 (1.03, 5.47)
170 263/337 1.97 (0.78, 5.02)
172 219/280 2.70 (0.96, 7.54)
177 259/322 2.49 (1.09, 5.70)
178 260/330 1.80 (0.77, 4.19)
180 262/337 2.05 (0.80, 5.25)
183 262/332 2.47 (1.11, 5.45)
187 262/336 2.41 (1.08, 5.40)
189 237/293 2.17 (0.65, 7.22)
194 262/335 1.36 (0.55, 3.38)
195 254/316 2.67 (0.95, 7.49)
196 263/337 1.91 (0.76, 4.83)
199 262/336 1.48 (0.63, 3.47)
206 262/334 0.98 (0.44, 2.17)
209 257/327 0.93 (0.46, 1.89)

Note: Adjusted models include log10-transformed lipids, age, sex, race, body mass index
(BMI), smoking status, and family history of high blood pressure. PCB congeners
shown have >60% limit of detection (LOD). CI, confidence interval; OR, odds ratio;
PCB, polychlorinated biphenyl.
aNumber of individuals with hypertension/total.
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and the sum of nondioxin-like PCBs with the concentrations
of inflammatory cytokines among participants with hyperten-
sion in ACHS II (Table S5). Higher-dioxin TEQs were related
to higher inflammatory cytokines levels, but the associations
were weak and did not reach statistical significance. The
nondioxin-like PCBs showed inverse associations with all
inflammatory cytokines studied except IL-1b. Linear regres-
sion of cytokine values for participants without hypertension
can be seen in Table S6.

Discussion
With the follow-up to ACHS I, we conducted a longitudinal study
8 y after the baseline to investigate the relationship between per-
sistent chlorinated compounds and hypertension in this older,
predominantly female, and biracial cohort of residents living
around the former PCB production plant in Anniston, Alabama.
We observed positive associations with prevalent hypertension

for a number of individual PCB congeners and both nondioxin-
like PCB structure–activity groups, as well as dioxin-like com-
pounds modeled as TEQs. The strongest (and statistically signifi-
cant) adjusted ORs were reported for PCBs 74, 99, 138, 153,
167, 177, 183, and 187 [ORs ranging from 2.18 (95% CI: 1.10,
4.33) to 2.76 (95% CI: 1.14, 6.73)], two estrogenic-like PCB
groups, and the thyroid-like group [ORs ranging from 2.25 (95%
CI: 1.07, 4.75) to 2.54 (95% CI: 1.13, 5.74)]. Furthermore, analy-
sis of quartiles demonstrated a monotonic relationship for dioxin-
like non-o-PCB TEQs [fourth vs. first quartile: 3.66 (95% CI:
1.40, 9.56)]. Longitudinal analyses of incident hypertension sup-
ported those positive associations. The results were strongest for
the di-o-PCBs [1.93 (95% CI: 0.93, 4.00)] and estrogenic II PCB
group [1.90 (95% CI: 0.96, 3.78)] but were weaker for the dioxin
TEQs. Overall, these data are supportive of associations of PCBs
with both prevalent and incident hypertension, despite not always
meeting the requirements of statistical significance (Amrhein et al.
2019; Rothman et al. 2008).

Evidence from Longitudinal Studies
Results from the Anniston cohort built on the data from four
other cohort studies that examined possible associations between
POPs and hypertension and were conducted in Sweden, Spain, and
Italy. In a Swedish cohort study with a 10-y follow-up, Donat-
Vargas et al. (2018) found positive associations between hyperten-
sion and dioxin-like PCBs (sum of mono-o-PCBs 118 and 156) in
1,511 middle-aged men and women. The multivariable-adjusted
OR of hypertension based on repeated measurements was 1.52
(95% CI: 1.08, 2.13) for the dioxin-like PCBs, which was similar in
direction and magnitude to the HR for our mono-o-PCBs group
[1.70 (95% CI: 0.86, 3.38)]; our sample size in the incidence analy-
ses was considerably smaller (n=145). We also reported increased
ORs for these congener groups in our prevalence analyses, and they
were significantly higher (2.70 and 2.57, respectively). In contrast,
Donat-Vargas did not observe a strong association for nondioxin-
like PCBs analyzed as a group (sum of PCBs 74, 99, 138, 153, 170,
180, 183, and 187).

Table 6. Demographics of participants included in incident analyses: ACHS I participants without hypertension stratified by their hypertension status in
ACHS II.

Demographics Hypertensive (n=80) Nonhypertensive (n=65) p-Value

Age (y) 59:84± 1:5 54:34± 1:9 0.048
BMI (kg=m2) 30:60± 0:8 30:16± 0:9 0.73
African Americans 44 (55%) 24 (36.9%) 0.03
Females 55 (68.8%) 48 (73.8%) 0.50
Total lipids (mg/dL) 677:02± 22:2 629:86± 17:9 0.11
Triglycerides 153:43± 13:7 119:14± 9:5 0.052
Glucose 107:03± 7:6 85:88± 2:7 0.017
Exercise in past week 52 (65%) 44 (67.7%) 0.8600
Education>high school 28 (35%) 32 (49.2%) 0.0925
Alcohol (past month)a 30 (37.5%) 17 (36.2%) 0.1582
Smoking status (lifetime)b 21 (26.3%) 13 (20%) 0.38
Family history of high blood pressure (yes) 68 (85%) 45 (69.2%) 0.023
Exposures
Total TEQ (pg/g) 145:15± 16:1 91:41± 9:5 0.008
Sum PCBs (pg/g) 5,930:46± 974:3 2,868:70± 417:7 0.0084
Sum nondioxin-like PCBs (pg/g) 6,034:11± 893:95 3,325:05± 412:22 0.013
Total TEQ (pg/g lipid) 54:1± 22:5 25:4± 2:9 0.2548
Sum PCBs (ng/g lipid) 858:4± 118:9 496:6± 78:6 0.0170
Sum nondioxin-Like PCBs (ng/g lipid) 838:5± 115:5 482:0± 76:3 0.0155

Note: Continuous variables presented as [mean± standard deviation ðSDÞ]; categorical variables presented as n (%). ACHS, Anniston Community Health Survey; BMI, body mass
index; PCB, polychlorinated biphenyl; TEQ, toxic equivalency. p-Value for continuous variables determined by two-tailed t-test, a<0:05. p-Value for categorical variables determined
by chi-square test, a<0:05.
aAlcohol status defined as having had at least one alcoholic drink in the past 30 days/never drank.
bSmoking status defined as having smoked at least 100 cigarettes in lifetime/never smoked cigarettes.

Table 7. Proportional hazard models of dioxin TEQs, PCB groups (pg/g
whole weight), and hypertension; longitudinal assessment.

TEQs (pg/g) na Adjusted HR (95% CI)

PCDD 79/144 2.16 (0.36, 12.94)
PCDF 78/143 1.81 (0.33, 10.02)
Mono-o-PCB 80/145 1.70 (0.89, 3.25)
Non-o-PCB 73/125 1.33 (0.78, 2.28)
Total dioxin 80/145 1.47 (0.54, 3.96)
PCB groups
Sum 80/145 1.89 (0.91, 3.90)
Mono-o 80/145 1.70 (0.86, 3.38)
Di-o 80/145 1.93 (0.93, 4.00)
Tri, tetra-o 80/145 1.81 (0.93, 3.56)
Estrogenic I 80/145 1.60 (0.83, 3.07)
Estrogenic II 80/145 1.90 (0.96, 3.78)
Anti-estrogenic 80/145 1.70 (0.89, 3.25)
Thyroid-like 80/145 1.48 (0.81, 2.70)

Note: Adjusted for log10-transformed total lipids, age, body mass index (BMI), race, sex,
and family history of high blood pressure. TEQs imputed (Yang et al. 2018). CI, confi-
dence interval; HR, hazard ratio; PCB, polychlorinated biphenyl; PCDD, polychlorinated
dibenzo-p-dioxin; PCDF, polychlorinated dibenzofuran; TEQ, toxic equivalency.
aNumber of individuals with hypertension/total.
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A study of similar size and length of follow-up to Anniston
was conducted by Arrebola et al. (2015). Two hundred ninety-
seven residents in Granada, Spain, were recruited between 2003
and 2004 and followed for 10 y. Positive associations between
several POPs and hypertension incidence were reported, espe-
cially in those with a BMI above 26 kg=m2. The HRs in their
study ranged from 1.20 to 1.36 and were statistically significant
for PCBs 138, 153, the sum of PCBs, and two pesticides: HCB,
and b-hexachlorocyclohexane. HRs of similar magnitude and
borderline statistical significance were noted for PCB 180 and p,
p0-DDE as well. The magnitude of increase in HRs with the
nondioxin-like PCB congeners is similar to the results of the
present longitudinal study in Anniston. The median concentra-
tions of selected PCB congeners in this Granada cohort (samples
collected in 2003–2004) were higher than in Anniston at baseline
in 2005–2007; PCB 138 was 74 vs. 123 ng=g lipid; PCB 153 was
203 vs. 176 ng=g lipid. The Granada cohort was of similar age as
the ACHS II participants included in the incidence analyses (me-
dian ages of 48 and 50 y in Spain and Anniston, respectively).
However, the Spanish cohort’s BMI indicated that the population
was only overweight (median BMI: 26:3 kg=m2), while ACHS II
participants were obese on average (median BMI: 30:5 kg=m2).

A prospective study in Brescia, Italy, enrolled residents from
the industrial area similar to Anniston surrounding the chemical
factory where PCBs were produced from 1938 to 1984, with con-
tamination found in local soil and food (Raffetti et al. 2018). A
dose–response relationship was observed between serum levels
from the sum of 24 PCB congeners and the onset of hypertension;
the adjusted relative risks for the second and third tertiles of
the serum PCB distribution were 2.07 (95% CI: 1.18, 3.63)
and 2.41 (95% CI: 1.30, 4.47), respectively, in 1,331 partici-
pants. Although the measured PCBs differ between studies to
some extent, our longitudinal analysis of the sum of 35 PCB
congeners resulted in a similarly elevated HR for hypertension
[HR=1:89 (95% CI: 0.91, 3.90)].

A fourth large follow-up study also was conducted in Spain
with 1,497 cases of hypertension among 14,521 participants; the
median follow-up was 8.3 y (Donat-Vargas et al. 2015). PCB
concentrations were not measured. Instead, the PCB intake was
estimated based on validated food consumption questionnaires
and measured PCB concentrations in food (Fernández-Ballart
et al. 2010; Llobet et al. 2008). In agreement with other cohort
studies, the investigators found a significant association between
PCBs and hypertension incidence. Those in the fifth quintile of
total PCB intake had a higher risk of developing hypertension
[HR=1:43 (95% CI: 1.09, 1.88)] than those in the first quintile.

Overall, the data from recent cohort studies provides growing
support for the role of nondioxin-like PCB congeners, (e.g., 138,
153, and 180), as well as the dioxin-like mono-o-congeners (e.g.,
118, 105, and 126) in the development of hypertension (reviewed
by Park et al. 2016). However, most cohort studies and cross-
sectional studies did not measure more than a few mono-o conge-
ners and did not use analytical methods to support the analysis of

more potent (AhR binding) dioxin-like non-o-PCB congeners. Our
findings for the non-o-PCB congeners (126 and 169) provide the
strongest support yet for the experimental/mechanistic findings.

Evidence from NHANES and Other Cross-Sectional Studies
The results of the cohort studies are supported by the results
from a number of cross-sectional studies that examined serum
PCB concentrations and hypertension. These studies have
included exposures in the general U.S. population [e.g., National
Health and Nutrition Examination Survey (NHANES)] as well
as some high PCB–exposed cohorts. In cross-sectional analy-
ses of NHANES data from 1999–2002, Everett et al. (2008)
reported an increased risk of hypertension with higher serum
concentrations of PCB congeners 138, 126, and 118; these
findings mirror the strong associations noted with congeners
138 and 118 (Table 5) and with the non-o-PCB TEQ (sum of
PCBs 126 and 169) and hypertension status in our study. Ha
et al. (2009) reported a positive nonsignificant trend towards a
greater hypertension risk with increasing concentrations of
nondioxin-like o-substituted PCBs (138, 153, and 180) in sep-
arate analyses of the same NHANES data set (1999–2002).
Inuit adults from Nunavik, Canada, who are highly PCB
exposed due to local fish consumption were found to have con-
gener levels about three times higher than those seen in Anniston
(PCB 153 geometric mean of 1:71 lg=L vs. 0:568 lg=L in
Anniston). Valera et al. (2013) found elevated hypertension ORs
for lipid-adjusted mono-o-substituted PCB 105 and for the non-
dioxin like di-o-PCBs 138 and 183.

Blood Pressure Results
Blood pressure analysis results using linear regression models
demonstrated only weak positive associations with systolic and
no association with diastolic blood pressure in this follow-up
Anniston study. This contrasts with our earlier results in the
ACHS I study for PCB congeners/groups and blood pressure
(Goncharov et al. 2011) and the findings reported by Peters et al.
(2014) for systolic pressure. The ACHS II findings for blood
pressure are more in line with the null associations found in the
Henríquez-Hernández et al. (2014) or Kreiss et al. (1981) papers,
providing little support for a definitive association between PCBs
or dioxin-like compounds and blood pressure.

Cytokines and Hypertension
We observed a marginally higher concentration of inflamma-
tory cytokines in hypertensive subjects in this follow-up study,
but there was little, if any, association with dioxin TEQ and
PCBs. Recent mechanistic studies are suggestive of the impor-
tance of these biomarkers of inflammation in hypertension de-
velopment (Norlander and Madhur 2017; Norlander et al. 2018;
McMaster et al. 2015). The clinical trial of Canakinumab tar-
geting IL-1b as a cytokine-based therapy (which also directly

Table 8. Geometric means of inflammatory cytokines in ACHS I and ACHS II.

Cytokines

ACHS I ACHS II

Hypertension No hypertension p-Valuea Hypertension No hypertension p-Valuea

TNFa 2.93 3.07 0.42 3.02 2.94 0.71
IL-1b 0.39 0.44 0.32 0.35 0.30 0.31
IL-6 0.46 0.46 0.90 0.50 0.40 0.07
IL-8 10.50 10.15 0.86 4.43 3.99 0.44
IL-17 2.42 3.04 0.06 2.60 2.47 0.70

Note: Reference levels of tumor necrosis factor-a (TNFa), interleukin 1b (IL-1b), and interleukin 6 (IL-6) for persons 70 years of age or older in the Framingham Heart Study were
reported as 1:30± 0:81 for TNFa, 1:12± 0:95 for IL-1b, and 1:15± 0:89 for IL-6 (Roubenoff et al. 2003). ACHS, Anniston Community Health Survey.
aa<0:05.
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stimulates the IL-6 receptor pathway) reported significantly
lower mortality in those on inflammation-reducing therapy
(Ridker et al. 2017). It is thus reasonable to investigate the
potential role of PCBs and dioxin-like compounds as immune
modulators in this setting. More extensive analyses will be
required to disentangle the role of PCB congeners or dioxin-
like compounds in these complex processes.

Strengths and Limitations
The ACHS II follow-up study in Anniston residents is one of the
few prospective investigations of the relationship between POPs
and hypertension. An additional strength of the study is the exten-
sive number of chemicals analyzed, including 35 PCB congeners,
dioxin-like compounds such as non-o-PCBs, as well as 2,3,7,8-
substituted dioxins and furans. This analysis used previously
reported PCB structure–activity groups (Table 1), which were
created on the properties of specific congeners. While correla-
tions between these groups are high in general (>0:80), lower
correlations are seen for some groups such as thyroid-like and
anti-estrogenic PCBs, which enables a better discrimination of
results. Furthermore, all the structure-activity PCB groups showed
weak correlations with p,p0-DDE and the dioxin TEQs (Figure 2).
In addition, serum lipids have been shown to achieve good equilib-
rium with adipose tissue (Patterson et al. 1987, 2009); we included
serum lipid concentration measurements before hypertension
developed in our incidence analyses.

Furthermore, an adjustment was made for a number of well-
known risk factors for hypertension, including a positive family
history. Nurse-verified medication and direct measurement of
blood pressure by study staff, as opposed to using self-report of
hypertension, was undertaken as part of data collection, particu-
larly since medical record review was not feasible in this
community-based study. Participants were asked to bring medica-
tion into the study office, which was recorded on-site. Weight
and height were also measured by study personnel at the baseline
and follow-up examinations. The average change in BMI among
the 338 participants was −0:28, which indicates that a few partic-
ipants lost weight over the 8-y time period; hypertension develop-
ment seemed to be independent of BMI or weight in our cohort.

Study limitations include a smaller sample size, as we could
only enroll surviving members of the Anniston cohort who had
not moved far (within a 1-h drive) from the study area.
Nonetheless, the sample size was sufficiently large to identify
a number of associations with good precision and narrow CIs
such as those for the structure–activity PCB groups and indi-
vidual congeners in the prevalence analyses. Statistical preci-
sion for the incidence analyses was more affected due to a
high prevalence of hypertension in the original study.
Individuals with hypertension recorded in ACHS I who par-
ticipated in ACHS II were excluded from the incident hyper-
tension follow-up assessment. Nevertheless, the hazard ratios
observed and reported here were stronger than those noted in
Arrebola et al. (2015), Donat-Vargas et al. (2018), or Raffetti
et al. (2018). Those studies had 10 y of the follow-up on aver-
age vs. 8 y in the Anniston cohort. Longer follow-ups are de-
sirable, but study results need to be relevant for the population
sampled, and advanced age may further reduce the number of
respondents in future follow-ups. Any aging cohort would
have some loss to follow-up, and we have confirmed death sta-
tus for 114 individuals through a National Death Index match
based on name, date of birth, sex, race, and address. Of the
583 ACHS I participants who were alive and eligible to partic-
ipate (last known addresses inside the study area), 438 were
successfully contacted, and 359 individuals were enrolled in
ACHS II (61.1% re-enrollment). Among the deceased from

ACHS I (n=114; Birnbaum et al. 2016), the OR for hyperten-
sion and sum of PCBs is 0.99 (95% CI: 0.27, 3.62) after adjust-
ing for age, sex, and race, and this was unlikely to bias the
observed associations seen in the participants of ACHS II.
Continued follow-up of this population is unlikely, as close to
80% of the sample already has prevalent diagnosed hyperten-
sion; the number on antihypertensive medication increased
from the first study from 75% to 81%. Also, per the American
Heart Association guidelines, a second visit would be prefera-
ble for clinically based hypertension diagnosis. This was not
feasible using this community-based design and also was not
done in the other longitudinal cohorts discussed here that were
not hospital based. The 78% prevalence of hypertension in the
Anniston cohort is close to previously reported prevalence val-
ues in a population of ≥70-y-old men and women (72%) (Lind
et al. 2014).

Conclusions
Our results add to the body of literature that examined the rela-
tionship between PCBs and other organochlorine compounds with
hypertension in longitudinal epidemiological studies, especially for
dioxin-like PCB congeners and dioxin TEQs not addressed else-
where. We found associations with hypertension prevalence for
PCB groups and dioxin TEQs, and these findings were further sup-
ported by our incidence analyses for PCBs. Additional research on
biomarkers of exposure, inflammation, and hypertension may be
needed to fully elucidate the impact of exposure to complex mix-
tures of environmental pollutants on hypertension.
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